铜仁市论坛

首页 » 分类 » 问答 » 聊聊程序Java并发容器与框架
TUhjnbcbe - 2020/6/4 11:15:00
白癜风诊疗指南

ConcurrentHashMap的实现原理与使用

为什么要使用ConcurrentHashMap

在并发编程中使用HashMap可能导致程序死循环。而使用线程安全的HashTable效率又非常低下,基于以上两个原因,便有了ConcurrentHashMap的登场机会。

线程不安全的HashMap

在多线程环境下,使用HashMap进行put操作会引起死循环,导致CPU利用率接近%,是因为多线程会导致HashMap的Entry链表形成环形数据结构,一旦形成环形数据结构,Entry的next节点永远不为空,就会产生死循环获取Entry。

效率低下的HashTable

HashTable容器使用synchronized来保证线程安全,但在线程竞争激烈的情况下HashTable的效率非常低下。因为当一个线程访问HashTable的同步方法,其他线程也访问HashTable的同步方法时,会进入阻塞或轮询状态。

ConcurrentHashMap的锁分段技术可有效提升并发访问率

假如容器里有多把锁,每一把锁用于锁容器其中一部分数据,那么当多线程访问容器里不同数据段的数据时,线程间就不会存在锁竞争,从而可以有效提高并发访问效率,这就是ConcurrentHashMap所使用的锁分段技术。

ConcurrentHashMap的结构

ConcurrentHashMap是由Segment数组结构和HashEntry数组结构组成。Segment是一种可重入锁,HashEntry则用于存储键值对数据。

一个ConcurrentHashMap里包含一个Segment数组。Segment的结构和HashMap类似,是一种数组和链表结构。一个Segment里包含一个HashEntry数组,每个HashEntry是一个链表结构的元素,每个Segment守护着一个HashEntry数组里的元素,当对HashEntry数组的数据进行修改时,必须首先获得与它对应的Segment锁,

ConcurrentHashMap的初始化

ConcurrentHashMap初始化方法是通过initialCapacity、loadFactor和concurrencyLevel等几个参数来初始化segment数组、段偏移量segmentShift、段掩码segmentMask和每个segment里的HashEntry数组来实现的。

初始化segments数组

由源码可知,segments数组的长度ssize是通过concurrencyLevel计算得出的。为了能通过按位与的散列算法来定位segments数组的索引,必须保证segments数组的长度是2的N次方,所以必须计算出一个大于或等于concurrencyLevel的最小的2的N次方值来作为segments数组的长度。假如concurrencyLevel等于14、15或16,ssize都会等于16,即容器里锁的个数也是16。

初始化segmentShift(段偏移量)和segmentMask(段掩码)

这两个全局变量需要在定位segment时的散列算法里使用,sshift等于ssize从1向左移位的次数,在默认情况下concurrencyLevel等于16,1需要向左移位移动4次,所以sshift等于4。

segmentShift用于定位参与散列运算的位数,segmentShift等于32减sshift,所以等于28,这里之所以用32是因为ConcurrentHashMap里的hash()方法输出的最大数是32位的。

segmentMask是散列运算的掩码,等于ssize减1,即15,掩码的二进制各个位的值都是1。因ssize的最大长度是,所以segmentShift最大值是16,segmentMask最大值是,对应的二进制是16位,每个位都是1。

初始化每个segment

输入参数initialCapacity是ConcurrentHashMap的初始化容量,loadfactor是每个segment的负载因子,在构造方法里需要通过这两个参数来初始化数组中的每个segment。

if(initialCapacityMAXIMUM_CAPACITY){initialCapacity=MAXIMUM_CAPACITY;}intc=initialCapacity/ssize;if(c*ssizeinitialCapacity){++c;}intcap=1;while(capc){cap=1;}for(inti=0;ithis.segments.length;++i){this.segments=newSegmentK,V(cap,loadFactor);}

上面代码中的变量cap就是segment里HashEntry数组的长度,它等于initialCapacity除以ssize的倍数c,如果c大于1,就取大于等于c的2的N次方值,所以cap不是1,就是2的N次方。segment的容量threshold=(int)cap*loadFactor,默认情况下initialCapacity等于16,loadfactor等于0.75,通过运算cap等于1,threshold等于零。

定位Segment

既然ConcurrentHashMap使用分段锁Segment来保护不同段的数据,那么在插入和获取元素的时候,必须先通过散列算法定位到Segment。可以看到ConcurrentHashMap会首先使用Wang/Jenkinshash的变种算法对元素的hashCode进行一次再散列。

之所以进行再散列,目的是减少散列冲突,使元素能够均匀地分布在不同的Segment上,从而提高容器的存取效率。

默认情况下segmentShift为28,segmentMask为15,再散列后的数最大是32位二进制数据,向右无符号移动28位,意思是让高4位参与到散列运算中,(hashsegmentShift)segmentMask的运算结果分别是4、15、7和8,可以看到散列值没有发生冲突。

ConcurrentHashMap的操作

get操作

Segment的get操作实现非常简单和高效。先经过一次再散列,然后使用这个散列值通过散列运算定位到Segment,再通过散列算法定位到元素,

publicVget(Objectkey){inthash=hash(key.hashCode());returnsegmentFor(hash).get(key,hash);}

get操作的高效之处在于整个get过程不需要加锁,除非读到的值是空才会加锁重读。get()方法无需加锁的原因是它的get方法里将要使用的共享变量都定义成volatile类型,定义成volatile的变量,能够在线程之间保持可见性,能够被多线程同时读,并且保证不会读到过期的值,但是只能被单线程写(有一种情况可以被多线程写,就是写入的值不依赖原值),在get操作里只需要读不需要写共享变量,所以可以不用加锁。

在定位元素的代码里我们可以发现,定位HashEntry和定位Segment的散列算法虽然一样,都与数组的长度减去1再相“与”,但是相“与”的值不一样,定位Segment使用的是元素的hashcode通过再散列后得到的值的高位,而定位HashEntry直接使用的是再散列后的值。其目的是避免两次散列后的值一样,虽然元素在Segment里散列开了,但是却没有在HashEntry里散列开。

hashsegmentShift)segmentMask//定位Segment所使用的hash算法intindex=hash(tab.length-1);//定位HashEntry所使用的hash算法

put操作

由于put方法里需要对共享变量进行写入操作,所以为了线程安全,在操作共享变量时必须加锁。put方法首先定位到Segment,然后在Segment里进行插入操作。插入操作需要经历两个步骤,第一步判断是否需要对Segment里的HashEntry数组进行扩容,第二步定位添加元素的位置,然后将其放在HashEntry数组里。

(1)是否需要扩容

在插入元素前会先判断Segment里的HashEntry数组是否超过容量(threshold),如果超过阈值,则对数组进行扩容。值得一提的是,Segment的扩容判断比HashMap更恰当,因为HashMap是在插入元素后判断元素是否已经到达容量的,如果到达了就进行扩容,但是很有可能扩容之后没有新元素插入,这时HashMap就进行了一次无效的扩容。

(2)如何扩容

在扩容的时候,首先会创建一个容量是原来容量两倍的数组,然后将原数组里的元素进行再散列后插入到新的数组里。为了高效,ConcurrentHashMap不会对整个容器进行扩容,而只对某个segment进行扩容。

size操作

如果要统计整个ConcurrentHashMap里元素的大小,就必须统计所有Segment里元素的大小后求和。Segment里的全局变量count是一个volatile变量,那么在多线程场景下,是不是直接把所有Segment的count相加就可以得到整个ConcurrentHashMap大小呢?不是的,虽然相加时可以获取每个Segment的count的最新值,但是可能累加前使用的count发生了变化,那么统计结果就不准了。

那么ConcurrentHashMap是如何判断在统计的时候容器是否发生了变化呢?使用modCount变量,在put、remove和clean方法里操作元素前都会将变量modCount进行加1,那么在统计size前后比较modCount是否发生变化,从而得知容器的大小是否发生变化。

ConcurrentLinkedQueue

ConcurrentLinkedQueue是一个基于链接节点的无界线程安全队列,它采用先进先出的规则对节点进行排序,当我们添加一个元素的时候,它会添加到队列的尾部;当我们获取一个元素时,它会返回队列头部的元素。它采用了“wait-free”算法(即CAS算法)来实现,该算法在MichaelScott算法上进行了一些修改。

ConcurrentLinkedQueue结构

ConcurrentLinkedQueue由head节点和tail节点组成,每个节点(Node)由节点元素(item)和指向下一个节点(next)的引用组成,节点与节点之间就是通过这个next关联起来,从而组成一张链表结构的队列。默认情况下head节点存储的元素为空,tail节点等于head节点。

入队列

入队列过程

入队主要做两件事情:第一是将入队节点设置成当前队列尾节点的下一个节点;第二是更新tail节点,如果tail节点的next节点不为空,则将入队节点设置成tail节点,如果tail节点的next节点为空,则将入队节点设置成tail的next节点,所以tail节点不总是尾节点。

那么多个线程同时进行入队的情况就变会更加复杂,整个入队过程主要做两件事情:

第一,定位出尾节点;

第二,使用CAS算法将入队节点设置成尾节点的next节点,如不成功则重试。

定位尾节点

tail节点并不总是尾节点,所以每次入队都必须先通过tail节点来找到尾节点。尾节点可能是tail节点,也可能是tail节点的next节点。代码中循环体中的第一个if就是判断tail是否有next节点,有则表示next节点可能是尾节点。获取tail节点的next节点需要注意的是p节点等于p的next节点的情况,只有一种可能就是p节点和p的next节点都等于空,表示这个队列刚初始化,正准备添加节点,所以需要返回head节点。

设置入队节点为尾节点

p.casNext(null,n)方法用于将入队节点设置为当前队列尾节点的next节点,如果p是null,表示p是当前队列的尾节点,如果不为null,表示有其他线程更新了尾节点,则需要重新获取当前队列的尾节点。

HOPS的设计意图

让tail节点永远作为队列的尾节点,这样实现代码量非常少,而且逻辑清晰和易懂。但是,这么做有个缺点,每次都需要使用循环CAS更新tail节点。如果能减少CAS更新tail节点的次数,就能提高入队的效率,所以douglea使用hops变量来控制并减少tail节点的更新频率,并不是每次节点入队后都将tail节点更新成尾节点,而是当tail节点和尾节点的距离大于等于常量HOPS的值(默认等于1)时才更新tail节点,tail和尾节点的距离越长,使用CAS更新tail节点的次数就会越少,但是距离越长带来的负面效果就是每次入队时定位尾节点的时间就越长,因为循环体需要多循环一次来定位出尾节点,但是这样仍然能提高入队的效率,因为从本质上来看它通过增加对volatile变量的读操作来减少对volatile变量的写操作,而对volatile变量的写操作开销要远远大于读操作,所以入队效率会有所提升。

注意:入队方法永远返回true,所以不要通过返回值判断入队是否成功。

出队列

出队列过程

首先获取头节点的元素,然后判断头节点元素是否为空,如果为空,表示另外一个线程已经进行了一次出队操作将该节点的元素取走,如果不为空,则使用CAS的方式将头节点的引用设置成null,如果CAS成功,则直接返回头节点的元素,如果不成功,表示另外一个线程已经进行了一次出队操作更新了head节点,导致元素发生了变化,需要重新获取头节点。

Java中的阻塞队列

何为阻塞队列

阻塞队列(BlockingQueue)是一个支持两个附加操作的队列。这两附加操作支持阻塞的插入和移除方法:

1)支持阻塞的插入方法:意思是当队列满时,队列会阻塞插入元素的线程,直到队列不满。

2)支持阻塞的移除方法:意思是在队列为空时,获取元素的线程会等待队列变为非空。

阻塞队列常用于生产者和消费者的场景,阻塞队列就是生产者用来存放元素、消费者用来获取元素的容器。

在阻塞队列不可用时,这两个附加操作提供了4种处理方式:

1)抛出异常:当队列满时,如果再往队列里插入元素,会抛出IllegalStateException("Queuefull")异常。当队列空时,从队列里获取元素会抛出NoSuchElementException异常。

2)返回特殊值:当往队列插入元素时,会返回元素是否插入成功,成功返回true。如果是移除方法,则是从队列里取出一个元素,如果没有则返回null。

3)一直阻塞:当阻塞队列满时,如果生产者线程往队列里put元素,队列会一直阻塞生产者线程,直到队列可用或者响应中断退出。当队列空时,如果消费者线程从队列里take元素,队列会阻塞住消费者线程,直到队列不为空。

4)超时退出:当阻塞队列满时,如果生产者线程往队列里插入元素,队列会阻塞生产者线程一段时间,如果超过了指定的时间,生产者线程就会退出。

这两个附加操作的4种处理方式不方便记忆,所以我找了一下这几个方法的规律。put和take分别尾首含有字母t,offer和poll都含有字母o。

注意:如果是无界阻塞队列,队列不可能会出现满的情况,所以使用put或offer方法永远不会被阻塞,而且使用offer方法时,该方法永远返回true。

Java里的阻塞队列

JDK7提供了7个阻塞队列,如下:

队列描述ArrayBlockingQueue由数组结构组成的有界阻塞队列。LinkedBlockingQueue由链表结构组成的有界阻塞队列。PriorityBlockingQueue支持优先级排序的无界阻塞队列。DelayQueue使用优先级队列实现的无界阻塞队列。SynchronousQueue不存储元素的阻塞队列。LinkedTransferQueue由链表结构组成的无界阻塞队列LinkedBlockingDeque由链表结构组成的双向阻塞队列。

阻塞队列的实现原理

使用通知模式实现。所谓通知模式,就是当生产者往满的队列里添加元素时会阻塞住生产者,当消费者消费了一个队列中的元素后,会通知生产者当前队列可用。通过查看JDK源码发现ArrayBlockingQueue使用了Condition来实现。

ArrayBlockingQueue源码解读

当往队列里插入一个元素时,如果队列不可用,那么阻塞生产者主要通过LockSupport.park(this)来实现。继续进入源码,发现调用setBlocker先保存一下将要阻塞的线程,然后调用unsafe.park阻塞当前线程。park这个方法会阻塞当前线程,只有以下4种情况中的一种发生时,该方法才会返回:

与park对应的unpark执行或已经执行时。“已经执行”是指unpark先执行,然后再执行park的情况。

线程被中断时。

等待完time参数指定的毫秒数时。

异常现象发生时,这个异常现象没有任何原因。

park在不同的操作系统中使用不同的方式实现,在Linux下使用的是系统方法pthread_cond_wait实现。

当线程被阻塞队列阻塞时,线程会进入WAITING(parking)状态。

Fork/Join框架

何为Fork/Join框架

Fork/Join框架是Java7提供的一个用于并行执行任务的框架,是一个把大任务分割成若干个小任务,最终汇总每个小任务结果后得到大任务结果的框架。

工作窃取算法

工作窃取(work-stealing)算法是指某个线程从其他队列里窃取任务来执行。那么,为什么需要使用工作窃取算法呢?假如我们需要做一个比较大的任务,可以把这个任务分割为若干互不依赖的子任务,为了减少线程间的竞争,把这些子任务分别放到不同的队列里,并为每个队列创建一个单独的线程来执行队列里的任务,线程和队列一一对应。比如A线程负责处理A队列里的任务。但是,有的线程会先把自己队列里的任务干完,而其他线程对应的队列里还有任务等待处理。干完活的线程与其等着,不如去帮其他线程干活,于是它就去其他线程的队列里窃取一个任务来执行。而在这时它们会访问同一个队列,所以为了减少窃取任务线程和被窃取任务线程之间的竞争,通常会使用双端队列,被窃取任务线程永远从双端队列的头部拿任务执行,而窃取任务的线程永远从双端队列的尾部拿任务执行。

工作窃取算法的优点:充分利用线程进行并行计算,减少了线程间的竞争。

工作窃取算法的缺点:在某些情况下还是存在竞争,比如双端队列里只有一个任务时。并且该算法会消耗了更多的系统资源,比如创建多个线程和多个双端队列。

Fork/Join框架的设计

步骤1:分割任务。首先我们需要有一个fork类来把大任务分割成子任务,有可能子任务还是很大,所以还需要不停地分割,直到分割出的子任务足够小。

步骤2:执行任务并合并结果。分割的子任务分别放在双端队列里,然后几个启动线程分别从双端队列里获取任务执行。子任务执行完的结果都统一放在一个队列里,启动一个线程从队列里拿数据,然后合并这些数据。

Fork/Join使用两个类来完成以上两件事情:

(1)ForkJoinTask:我们要使用ForkJoin框架,必须首先创建一个ForkJoin任务。它提供在任务中执行fork()和join()操作的机制。通常情况下,我们不需要直接继承ForkJoinTask类,只需要继承它的子类,Fork/Join框架提供了以下两个子类。

RecursiveAction:用于没有返回结果的任务。

RecursiveTask:用于有返回结果的任务。

(2)ForkJoinPool:ForkJoinTask需要通过ForkJoinPool来执行。任务分割出的子任务会添加到当前工作线程所维护的双端队列中,进入队列的头部。当一个工作线程的队列里暂时没有任务时,它会随机从其他工作线程的队列的尾部获取一个任务。

使用Fork/Join框架

使用Fork/Join框架首先要考虑到的是如何分割任务,如果希望每个子任务最多执行两个数的相加,那么我们设置分割的阈值是2,由于是4个数字相加,所以Fork/Join框架会把这个任务fork成两个子任务,子任务一负责计算1+2,子任务二负责计算3+4,然后再join两个子任务的结果。因为是有结果的任务,所以必须继承RecursiveTask,

ForkJoinTask与一般任务的主要区别在于它需要实现

1
查看完整版本: 聊聊程序Java并发容器与框架